
Automated Synthesis of Adversarial Workloads
for Network Functions

Luis Pedrosa
EPFL

luis.pedrosa@epfl.ch

Rishabh Iyer
EPFL

rishabh.iyer@epfl.ch

Arseniy Zaostrovnykh
EPFL

arseniy.zaostrovnykh@epfl.ch

Jonas Fietz
EPFL

jonas.fietz@epfl.ch

Katerina Argyraki
EPFL

katerina.argyraki@epfl.ch

ABSTRACT
Software network functions promise to simplify the deploy-
ment of network services and reduce network operation cost.
However, they face the challenge of unpredictable perfor-
mance. Given this performance variability, it is imperative
that during deployment, network operators consider the per-
formance of the NF not only for typical but also adversarial
workloads. We contribute a tool that helps solve this chal-
lenge: it takes as input the LLVM code of a network function
and outputs packet sequences that trigger slow execution
paths. Under the covers, it combines directed symbolic execu-
tion with a sophisticated cache model to look for execution
paths that incur many CPU cycles and involve adversarial
memory-access patterns. We used our tool on 11 network
functions that implement a variety of data structures and dis-
covered workloads that can in some cases triple latency and
cut throughput by 19% relative to typical testing workloads.
KEYWORDS
Network Function Performance; Adversarial Inputs

1 INTRODUCTION
This work is about software network functions (NFs): pieces
of code, typically written in C or C++, that provide packet-
processing functionality, such as forwarding, load balancing
and network address translation. Traditionally, such func-
tionality has been relegated to closed network appliances or
middleboxes, often implemented in hardware. Recently, how-
ever, there has been a push towards software NFs, which have
the potential to offermore flexibility, reduced time-to-market,
and reduced capital and operating expenses [18, 34, 35].
This shift from hardware middleboxes to software NFs

ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor or affiliate of a national government. As such,
the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes
only.
SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5567-4/18/08. . . $15.00
https://doi.org/10.1145/3230543.3230573

comes with the challenge of unpredictable performance.
While hardware middleboxes process packets through ASICs
that typically yield stable performance, software NFs process
packets on general-purpose CPUs, which may yield vari-
able performance. This variability provides an attack surface
for adversaries seeking to degrade NF performance, e.g., by
sending specially crafted packet sequences that significantly
increase the per-packet latency and/or decrease throughput.
Hence, when network operators deploy a new NF, they need
to know its performance in the face of not only typical but
also adversarial workloads; predicting NF performance as-
suming simple workloads, e.g., small packets with a uniform
or Zipfian distribution of destination IP addresses [15], is
useful but insufficient.
However, finding adversarial workloads in NFs—or any

other non-trivial piece of software—can be hard. Different
packet sequences can traverse different execution paths, with
different performance envelopes. In some scenarios, finding
the “bad paths” and the workloads that exercise them is
relatively easy, e.g., when state is stored in a tree, in which
case the adversarial workloads are those that update the
tree in a way that induces skew. There are, however, more
complicated scenarios, e.g., when state is stored in a hash
table, in which case workloads that induce hash collisions
can significantly degrade performance.
Our contribution is CASTAN (Cycle Approximating Sym-

bolic Timing Analysis for Network Functions), a tool that au-
tomatically synthesizes adversarial workloads for NFs. Given
the LLVM [2] code of an NF and a processor-specific cache
model, CASTAN tries to discover execution paths that con-
sume relatively large numbers of CPU cycles and synthe-
sizes workloads that trigger them. We designed CASTAN with
two properties in mind: (a) it should finish in useful time
(minutes to hours); and (b) it should, ideally, discover work-
loads that are close to the worst-case scenario, even though
we cannot formally guarantee that this will always be the
case. The intended users of our tool are NF developers and
network operators: developers can use CASTAN’s workloads

372

https://doi.org/10.1145/3230543.3230573

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary L. Pedrosa et al.

to stress-test the performance of their NFs and debug perfor-
mance problems; operators can use them to provision their
networks and be better prepared for worst-case scenarios.

CASTAN combines a symbolic execution engine with a
processor-specific cache model. The main idea is to explore
multiple execution paths of the NF while keeping an esti-
mate of the execution cycles consumed by each path; then
use directed symbolic execution [24] to guide exploration to-
wards paths that are more likely to induce bad performance.
The cache model helps find workloads that induce cache
contention, resulting in frequent main-memory accesses. We
have also developed a technique that helps reason about the
performance of code constructs that are not amenable to
analysis by symbolic execution.
To the best of our knowledge, this is the first work that

leverages techniques from the programming languages and
verification world to reason about NF performance and syn-
thesize adversarial workloads. Prior work on NF code analy-
sis focused on properties unrelated to performance: it identi-
fied semantic bugs [9, 22, 23, 29, 44], or formally proved crash-
freedom and bounded execution [14], or memory safety and
semantic properties [43]. Prior work on code performance
analysis focused on code that uses a more constrained set of
data structures [30, 32, 39].

We evaluated CASTANwith 11 NFs that employ a variety of
data structures and algorithms. In scenarios where one can
intuitively hand-craft adversarial workloads, CASTAN’s work-
loads yielded very similar performance to the hand-crafted
ones. In other, less intuitive scenarios, CASTAN’s workloads
increased latency by as much as a factor of 3 and decreased
throughput by as much as 19% relative to typical testing
workloads.

The rest of the paper is organized as follows: In §2 we
provide background on symbolic execution. We describe
CASTAN’s design in §3, its implementation in §4, and its eval-
uation in §5. Finally, we discuss related work in §6 and con-
clude in §7.

2 BACKGROUND
In this section, we provide basic background on symbolic ex-
ecution (symbex) [21], the technique that underlies CASTAN’s
analysis. The reader familiar with symbolic variables and
expressions, symbex states, and path explosion, can safely
skip to the next section.
Symbex is a program-analysis technique that explores

multiple execution paths of a given program. It uses a special
interpreter, called a symbolic execution engine (SEE). The
SEE canmake any input or variable (including a pointer) sym-
bolic, i.e., assign to it a symbol representing many possible
concrete values. As the symbolic inputs propagate through
the program, the SEE keeps track of the resulting symbolic
expressions. For example, suppose a program takes as input

an integer in; the SEE can make in symbolic, assigning to it
a symbol α that represents all possible integer values; if the
program at some point assigns to an integer variable x the
value in + 1, then x also becomes symbolic with value α + 1.
If the program reaches a conditional branch predicated on a
symbolic value, the SEE can either concretize the symbolic
variable/input, i.e., pick one of its possible concrete values,
or explore all possible outcomes of the branch. For each out-
come it explores, the SEE creates a new execution state and
maintains a path constraint, which specifies the conditions
that the symbolic inputs must satisfy such that the program
reaches this execution state. For example, if an execution
state has path constraint in > 0, this means that this execu-
tion state is reached if and only if the program’s input in
is positive. With the help of a solver, the SEE determines
which path constraints are satisfiable and avoids exploring
infeasible paths.
Symbolic execution suffers from path explosion: a very

large, potentially unbounded number of paths to explore,
which typically occurs in the presence of loops and/or code
that maintains significant state. There are two general ways
to side-step path explosion: constrain the input and/or the
expressiveness of the code, or prioritize the exploration of
certain execution states over others through “directed sym-
bolic execution” [24], so as to achieve a specific goal, e.g.,
maximize line coverage [17, 33] or find specific kinds of bugs
[29]. CASTAN falls in the latter category.

3 DESIGN
In this section, we describe CASTAN’s design.We start with an
overview (§3.1) and a description of our cache model (§3.2).
Then we focus on the three main technical challenges we
faced: identifying adversarial memory-access patterns (§3.3),
identifying long execution paths (§3.4), and analyzing NFs
with hash functions (§3.5).

3.1 Overview
We assume a reasonably powerful adversary: She has access
to the NF code or intermediate build files, and she knows
the processor on which the NF runs; this makes sense in
the context of open-source NFs running in multi-tenant en-
vironments like cloud providers. We also assume that the
adversary can generate adversarial workloads that can reach
the targeted NF unmodified and unfiltered; this makes sense
given the direct exposure of many NFs on the network.

CASTAN takes as input the LLVM code of an NF and a
processor-specific cache model; the output is a sequence of
N concrete packets, where N is a configurable parameter.
Under the covers, we execute the given NF code on an SEE,
providing as input a sequence of N symbolic packets. As
symbex proceeds, we keep track of each execution state’s
“cost”—our expectation of the highest number of cycles per

373

Automated Synthesis of Adversarial Workloads
for Network Functions SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

packet (CPP) that this state can lead to—and prioritize ex-
ploring states with higher cost. When we exhaust our time
budget, we halt the process, pick the state with the highest
cost, provide its path constraint to a solver, and obtain a
sequence of N concrete input packets that lead to this state;
this packet sequence is our adversarial workload.
The main challenge is computing the cost of each state,

which should reflect the likelihood of this state being a part
of an adversarial workload. Consider a state S that results
from the execution of a sequence I of LLVM instructions.
We define S’s cost as a sum of two parts: the “current cost”
and the “potential cost.” Ideally, the current cost would be the
highest CPP that could be consumed to reach S, while the po-
tential cost would be the highest CPP that could be consumed
following S. To compute the former, we would consider all
the memory access patterns that could result from executing
I and pick the one that yields the highest CPP. Similarly,
to compute the latter, we would identify all the instruction
sequences that could follow I and all the memory access
patterns that could result from executing each sequence, and
pick the combination that yields the highest CPP. In practice,
both the current and the potential cost are approximations,
because we typically cannot consider all the feasible memory
access patterns or instruction sequences.
Our approach is akin to an A* search [19], with the dif-

ference that we are trying to maximize, not minimize the
expected cost. A traditional A* search finds the shortest path
from a source to a destination, with the help of a heuristic
that predicts the shortest distance from any candidate inter-
mediate node to the destination. The result is guaranteed to
be correct under the condition that the heuristic is “admissi-
ble,” i.e., it returns a value that is always less than or equal to
the actual shortest distance. To provide similar guarantees,
we would need a heuristic that predicts the highest cost from
any execution state to the point where the next packet is
received and returns a value that is always greater than or
equal to the actual highest cost. Given that we typically can-
not tightly bound the highest cost (because we cannot tightly
upper-bound the number of loop iterations in the code), our
heuristic would often significantly over-estimate (in the ex-
treme, return infinity), devolving into a breadth-first search
and leading to path explosion. Hence, we preclude the for-
mal guarantees of A*, in favor of finding useful adversarial
workloads quickly.

Once we select the state with the highest cost, the next
challenge is to resolve the associated path constraint and find
a sequence of concrete packets that leads to this state. The
default approach is to use an SMT solver, which we also do,
but we need to overcome a hurdle: NF code often involves
hash functions applied to packet headers, e.g., to compute
a checksum, or to index a hash table that keeps per-flow
state. As a result, resolving a path constraint may involve

3 bits 6 bits 6 bits15 bits

byte offsetL1d line

L2 line

L3 slice

34 bits

1GB page offset1GB page index

Figure 1: Memory hierarchy of Intel Xeon E5-2667v2.

inverting one or more hash functions—something that an
SMT solver typically fails to do in useful time. Sometimes
we can solve the problem by reversing the hash function
with precomputed rainbow tables [27] and reconciling the
constraint on both the packet and the hash value. When
that does not work, e.g., in case of a strong cryptographic
hash function, we sidestep hash inversion altogether and
output a sequence of partially symbolic packets (§3.5). In
other words: if, to trigger bad NF performance, one has to
invert a hash function, and if inverting that hash function
is infeasible today, we still tell the developer what the bad
performance is, and also provide a way to automatically
synthesize a workload that will trigger it, should the hash
function ever become invertible.
3.2 Cache Contention Sets
To construct adversarial memory-access patterns, we need a
model of the memory hierarchy. Unfortunately, building a
detailed model is impossible, because the caching algorithms
of modern processors are at least partially proprietary. In
Xeon processors, in particular, the L1 and L2 cache locations
are determined in the traditional way1, however, the L3 cache
slice is determined by a proprietary hash function. Fig. 1
illustrates what we know about the memory hierarchy of
the processor used in our evaluation (Intel Xeon E5-2667v2),
based on publicly available information and given that we
used 1GB memory pages. In this processor, L1d is 8-way
associative with 32kiB per core, L2 is 8-way associative with
256kiB, and L3 is 20-way associative with 25600kiB.
Hence, the only assumption we can make about our L3

cache is that a process’s address space is divided into con-
tention sets, i.e., sets of memory addresses such that: if an
L3 cache with associativity α is empty, then α addresses
from the same contention set can be brought into the L3
cache without any evictions, while bringing in an (α + 1)st
address from the same contention set will evict one of the α
previously brought addresses.

Since the algorithm that determines the contention sets is
proprietary, we developed a simple mechanism to reverse-
engineer them. The main idea is to form different sets of
memory addresses and measure each set’s probing time, i.e.,

1The bo least significant bits of a memory address are used to compute the
cache-line offset, while the next b1 and b2 least significant bits, respectively,
are used to index the L1 and L2 cache. The values of bo , b1 and b2 can be
inferred from the publicly disclosed cache sizes and associativity.

374

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary L. Pedrosa et al.

the time it takes to sequentially read all its addresses re-
peatedly in a loop (100 times in our case). To enforce se-
quential reads, i.e., avoid pipelining effects, we use pointer
chasing [12]. Consider a set S1 that includes at most α ad-
dresses from any contention set, and a set S2 that includes at
least (α + 1) addresses from some contention set. S2’s prob-
ing time will be higher than S1’s probing time by at least a
contention threshold δ , as it includes an extra DRAM access.

Building on the above idea, we identify a contention set in
three steps: (1)We form a set of addresses S that includesα+1
addresses from a contention set C : Starting with an empty S ,
we keep adding addresses and measuring S’s probing time,
until we add some address A that increases S ’s probing time
by more than the contention threshold δ . At this point, we
know that A was the (α + 1)st address added to S from the
same contention set. We call that contention set C . (2) We
reduce S such that it consists exactly of α + 1 addresses from
contention set C : For each address A ∈ S , we remove A from
S and check whether that decreases S ’s probing time by more
than δ ; if yes, then we know thatA belongs toC , and we add
it back to S . Once we are done, all addresses in S belong to
C . (3) We identify all remaining addresses that belong to the
contention setC : For each memory addressA < S , we replace
an address in S with A and check whether that decreases S ’s
probing time by more than δ ; if not, then we know that A
belongs to C . By repeating these steps multiple times, we
identify all the contention sets of a given process.

In principle, different processes have different contention
sets. This is because the L3 cache is physically indexed, i.e.,
the algorithm that determines the placement of a cache line
in the L3 cache is applied to physical, not virtual addresses.
In our Xeon processor, in particular, the L3 cache line is
determined to some extent by bits 30–63 of the physical
address (Fig. 1). We use 1GB memory pages, which means
that bits 0–29 of each address are used as page byte offset,
hence are the same between virtual and physical addresses.
As such, some of the bits used to identify the L3 cache line
are different between physical and virtual address, resulting
in different contention sets per process.

To solve this problem, we repeat the contention-set discov-
ery process with 8 different 1GB memory pages and across
machine reboots. We post-process the results and retain only
consistent contention sets, i.e., sets of addresses that have
the same bits 0–29 and are always in the same contention
set across different runs. This reduces the size of the dis-
covered contention sets but produces results that generally
hold across process runs and machine reboots. As different
processors may use different proprietary hashing algorithms,
the discovered contention sets may not hold across different
processor types. For our Xeon processor, in particular, we
discovered 23 409 contention sets varying in size from 32 to
5638 entries.

3.3 Current Cost and Memory Access
To compute the current cost of a state S, corresponding to
instruction sequenceI, we consider the sequence of all mem-
ory addresses accessed byI and try to constrain the symbolic
memory addresses such that the resulting memory-access
pattern incurs as many trips to main memory as possible.
Then we consider each instruction i in I and assign to it an
estimate of the number of cycles that it consumes: a fixed
per-instruction cost learned empirically, if i does not access
memory; and a fixed per-memory-level cost, if i does access
memory. To constrain the symbolic memory addresses and
determine which memory accesses are hits and misses, we
use a cache model, initialized to a clear cache, that is built
on top of the contention sets discovered as described in §3.2.
For example, consider an NF that accesses an IP lookup

table, once per incoming packet. Which table location is ac-
cessed depends on the packet’s IP headers, which, in our
context, are symbolic. Hence, every table access yields an
access to a new symbolic memory address As , constrained
according to the boundaries of the table and the spacing
between its entries. Moreover, at every table access, we use
the cache model to determine: which (concrete) memory ad-
dresses are in the cache, which contention sets they belong
to, and how many extra addresses from each contention set
need to be accessed to cause an eviction. Based on this in-
formation, we create a list of candidate memory addresses
that, if accessed, we expect to cause L3 cache contention.
For each candidate memory address A, we use a solver to
check whether A is compatible (satisfies the constraint asso-
ciated) with the symbolic memory address As that is being
accessed. If so, we concretizeAs toA and constrain the incom-
ing packet’s IP headers accordingly. Ideally, this constrains
all symbolic memory addresses to the same contention set,
which guarantees an L3 cache miss as soon as we exceed
associativity. If that fails, we greedily try to constrain all
addresses to as few contention sets as possible.

Limitations: To keep our approach scalable, we do not
seek the provably worst memory-access pattern—just a very
bad one that can be discovered within a reasonable time bud-
get. (1) We do not consider the L1 and L2 caches; we tried
designing a model of the memory hierarchy that did, but
were unable to make it detailed and accurate enough to make
a difference. (2) We do not consider prefetching and Data
Direct I/O (DDIO) [1]. Prefetching is hard to model, because
it is based on proprietary algorithms. However, as supported
by our evaluation, prefetching does not significantly affect
NF performance, because NF memory-access patterns are
determined by network traffic and are typically not sequen-
tial or periodic. DDIO does affect NF performance, because
it places the headers of incoming packets in the cache before
they are accessed, thereby avoiding a previously mandatory

375

Automated Synthesis of Adversarial Workloads
for Network Functions SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

1 0

2

4

3

5 5 06

87

7

Figure 2: Example of annotated ICFGs showing each
node’s estimated maximum distance to the black
node.

cache miss. However, this improves all workloads the same,
hence does not affect our task of seeking adversarial work-
loads. (3) When we constrain symbolic memory addresses,
we make locally optimal decisions. Otherwise, we would
have to follow the standard, non-scalable symbex behavior
of resolving each accessed symbolic address to all feasible
concrete addresses and creating a new state for each one,
which fails to yield results in useful time.
3.4 Potential Cost
The potential cost of a state S is an estimate of the maximum
number of cycles that could be consumed to get from S to
the point where the next packet is received. To compute
it, we rely on a pre-processing stage that extracts the NF’s
interprocedural control-flow graph (ICFG)2 and annotates
each node (which corresponds to an instruction) with an
estimate of such a potential cost. This annotated ICFG then
allows S’s potential cost to be efficiently computed during
symbex.
During pre-processing, we start from each node’s local

cost, assuming all memory accesses are L1 hits; we then use
a special form of path-vector routing to propagate these local
costs and estimate each node’s potential cost3. In the absence
of loops, this is simple: each node’s cost is augmented by
the cost of the most expensive successor. Fig. 2 on the left
shows an example of an annotated ICFG, in the presence of
a simple if-then-else statement.

Things are more complicated in the presence of loops: at
this stage of the analysis we do not have enough context
to bound the number of times a loop can execute; if we
propagate costs naïvely, any loop will induce an infinite
potential cost to every node within and before it, making the
analysis intractable. To address this challenge, we ensure a
node may show up at most M times in a path (within our
path vector routing algorithm), where M is a configurable
parameter. This essentially makes a static assumption that
every loop executes exactlyM − 1 times. In our evaluation,
we useM = 2, which balances exploring the cost of a loop’s
internals (M = 1 hides all instructions within the loop body)
against the negative effects of over-estimation. Fig. 2 on

2The ICFG augments the traditional control-flow graph with function-call
edges and typically takes less than a second to extract.
3A node’s potential cost accounts for both calling functions in a chain (a()
calls b(), and b() reaches the target) and returning from them (a() calls
b(), which must return before a() reaches the target).

Packet
Hash
Input

Hash
Value

Poor
Perf.

3: Solve 2: Reverse 1: Solve

Figure 3: Handling hash functions: solid arrows show
how NFs typically use hashing; empty arrows show
CASTAN’s reconciliation procedure.

the right shows an example of an annotated ICFG, in the
presence of a loop.
During symbolic execution, every time the SEE reaches

a loop head, it creates two execution states: one that cor-
responds to exiting the loop as soon as possible, and one
that corresponds to executing one more iteration (if that is
feasible). Next, the SEE must choose which of the two states
has the highest potential cost, and it always chooses the one
that corresponds to executing one more loop iteration (again,
as long as one more iteration is feasible). Hence, in the end,
the SEE greedily explores the loop as deeply as possible.

Limitations: The ICFG cannot tell us which is the most
expensive instruction sequence that follows a given state, be-
cause it does not take into account the constraints associated
with that state. It only provides a first-order approximation.
The time limit for the execution only allows for a partial
state space exploration. Higher limits give a better chance of
escaping local maxima, but remain an approximation when
an exhaustive exploration is time-prohibitive. This prevents
CASTAN from formally verifying worst-case performance.

3.5 Hash Functions
NFs that use data structures relying on hash functions pose a
particular challenge to symbex. Symbexing a hash function
typically leads to the creation of complex symbolic expres-
sions that often exceed the solver’s capabilities and result in
solver timeouts.

We address this issue with a technique called havocing [5],
which decouples the two parts of the code: the part that gen-
erates the input to the hash function, and the part that uses
the hash value. This technique (which takes place at the gray
arrow in Fig. 3) disables the execution of the hash function
and replaces (havocs) its output with an unconstrained sym-
bol, allowing the analysis of the code that uses the hash value
to proceed normally, merely reasoning about constraints on
the hash value. This results in a series of constraints that
concern both the input packet and the resulting hash value.
This on its own can already be useful, as it can provide in-
sights into what a poor performance scenario may look like.
The analysis essentially says that performance will suffer if
we can find a packet that meets certain constraints and when
hashed, produces a hash value that meets an additional set
of constraints.
We reconcile the two sets of constraints in three steps

376

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary L. Pedrosa et al.

(shown as empty arrows in Fig. 3). We first use the solver to
find a few candidate hash values. We then invert these hash
values using brute-force methods augmented by the use of
rainbow tables [27]. Finally, the solver checks if the hash
input is compatible with the packet constraints and finds a
matching packet.
While the first stage of this process is typically straight-

forward and likely to succeed, the likeliness of success of
the second and third stages depends heavily on the quality
of the rainbow tables. The process is analogous to solving
constraints by successively attempting random assignments
in the hope that a satisfying one eventually emerges. As we
use rainbow tables, success first depends on the table having
entries that match the hash-values found in the first stage.
This requires the rainbow table to have enough entries that
each value is represented a few times, i.e. ∼ 2∥hash−value ∥ .
This doesn’t pose a challenge as typical hash values are small
(∼ 20 bits, requiring a few millions of entries).

The more serious bottleneck is in finding hash inputs that
satisfy the packet constraints. Finding satisfying values at
random depends on how heavily constrained the packet is.
For example, while analyzing a series of NFs that use a hash
table (§5), we realized that the 8-bit IP protocol field was a
part of the hash key. As the NFs only support TCP and UDP,
the odds would reject 254/256 ≈ 99% of the rainbow table
entries based on that constraint alone, potentially slowing
the search and increasing the requisite table size by 100×.
In such scenarios, we can increase the likelihood of success
by generating a custom-tailored rainbow table with values
that are more likely to fit the constraints. In this case, we
populated the rainbow table with values that assume UDP.

4 IMPLEMENTATION
We implemented CASTAN [11] by forking an existing symbolic
execution engine, KLEE [8], and adapting it to our needs. The
key changes revolve around the implementation of the cache
model (§3.3), the directed symbolic execution heuristic (§3.4),
and the ability to havoc and reverse hash functions (§3.5).
Additional tools were also created to help build, process,
and validate the empirical cache models (§3.2) as well as to
generate PCAP files from the analysis output.
The cache model is implemented as a special pluggable

module which is called during the symbolic execution of the
load and storememory operations. The module is designed
as a plug-in so that multiple implementations can be easily
swapped in. Our default cache model uses the contention sets
discovered in §3.2. The module takes as input the symbolic
expression of the pointer being used to access memory and
adds constraints to the execution state. This processing oper-
ates in two stages. The initial phase looks at the current state
of the cache model, picks the worst compatible cache line,
and adds a series of constraints on the pointer expression to

the path constraint, essentially concretizing the pointer. The
second phase then takes this concrete pointer value and up-
dates the cache model state so that future memory accesses
will take it into account.

We implement our directed symbolic execution heuristic
via a custom searcher class, which is a pluggable module
that KLEE uses to pick which states to explore next. In this
module, we first preprocess the NF LLVM code to extract
the ICFG. Additionally, we annotate each instruction with
cost estimates, as described in §3.4. Later, as the analysis is
running, this annotated ICFG helps us to quickly compute the
cost heuristic for each execution state, allowing us to order
the pending states and prioritize the further exploration of
those with a higher estimated CPP.
The ability to havoc and reverse hash functions is im-

plemented in two phases. The first phase involves annotat-
ing the code to identify where the hash value is computed.
The developer uses a special CASTAN annotation, castan_
havoc(input,output,expr). When the NF is compiled for
use in production, this annotation simply equates to "output
= expr;".When built for analysis, the annotation keeps track
of the symbolic expression of input and then havocs the
output variable by setting it to a new unconstrained symbol.
Later, in a post-processing stage that occurs just before out-
putting the path, we use the information gathered through
this annotation, alongside a user specified rainbow table, to
reconcile the havocs, as explained in §3.5.
Finally, we modify KLEE to generate additional outputs

that indicate the expected performance for each generated
path. As such, a successful CASTAN run will generate two
files for each path that it generates. The first is a traditional
KTEST file, indicating concrete symbol values that will ex-
ercise the path. We convert this file into a PCAP file using
a separate tool. The second file lists all of the CPU model
metrics, on a per packet basis, including the number of non-
memory instructions executed, the number of loads and
stores, and the number of memory accesses that hit the
cache. These metrics can be used directly to help debug the
difference between distinct scenarios or simply to predict the
performance envelope of each path, revealing the slowest
path generated.

5 EVALUATION
In this section, we compare the workloads synthesized by
CASTAN for 11 real NFs to workloads that were manually
crafted to be adversarial by the engineer who wrote each NF.
We first describe our evaluation setup (§5.1), then present our
results for scenarios where the adversarial behavior comes
primarily frommemory accesses (§5.2), algorithmic complex-
ity (§5.3), or hash-function manipulation (§5.4).

377

Automated Synthesis of Adversarial Workloads
for Network Functions SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

5.1 Setup
Testbed. Our testbed consists of a device under test (DUT)
directly connected to a traffic generator/sink (TG). Both have
Intel Xeon E5-2667v2 3.3GHz CPUs with 25.6MB of L3 cache
and 32GB of RAM; they are connected over Intel 82599ES
10Gb NICs. In each experiment, the DUT runs one NF. The
TG uses MoonGen [16] to replay specific PCAP files. Each
experiment lasts 20 seconds. If a PCAP file does not yield 20
seconds worth of traffic, we replay it in a loop.
Performance metrics. First, we measure the end-to-end
latency from the moment a packet exits until it re-enters
the TG NIC. Our measurement process relies on hardware
timestamps added by the TG NIC as described in [31], which
has accuracy on par with hardwaremeasurement devices.We
do not ignore dropped packets: if the NF running on the DUT
decides to drop a packet, we allow it to mark the packet as
dropped, but we forward the packet back to the TG anyway,
such that the latency it encounters is measured. During these
experiments, the TG sends packets at a low enough rate that
there is no more than one outstanding packet between the
TG and the DUT, thus excluding any queuing or pipelining
effects. We present the results in the form of a cumulative
distribution function (CDF) per experiment.
Using an external TG benefits from high precision hard-

ware timestamping, but this also measures the DPDK and
driver stacks on the DUT as well as the transmission latency
between the TG and the DUT. To quantify this overhead
and estimate the NF latency in isolation we include in each
plot the end-to-end latency CDF of a special NOP NF that
forwards packets without any other processing. When we
compare latency in relative terms, we use this NOP as a
baseline to subtract from.
Second, we measure the maximum throughput achieved

by each NF: we vary the rate at which the TG sends packets
to the DUT and identify the highest rate at which the DUT
drops less than 1% of the packets it receives.

Third, we conduct a micro-architectural characterization
of each NF: we measure the number of reference cycles,
instructions retired, and L3 cache misses (i.e., DRAM ac-
cesses) per packet, using CPU performance counter registers
exposed through libPAPI [25]. These numbers allow us to
reason about why one workload incurs worse performance
than another. As in the latency experiments, there is no more
than one outstanding packet between the TG and the DUT,
and we present the results in the form of CDFs.
Network Function Logic. Our current research prototype
assumes single-threaded NFs that use the basic DPDK API.
This excludes many existing non-trivial open-source NFs.
As such, we developed a library of NFs for evaluation pur-
poses. We implemented three classes of NFs: IP longest prefix
matching (LPM), source network address translation (NAT),

and stateful L4 load balancing (LB).
LPM provides standard destination-based IP lookup. We

populate the forwarding table with /8, /16, /24, and in some
case /32 routes (depending on the underlying data structure),
8 of each. We chose the prefixes to overlap as much as possi-
ble, i.e., each prefix includes a more specific one (except for
the /32 entries).
NAT provides standard source network address transla-

tion, i.e., it maintains per-flow state and uses it to: rewrite the
source IP address and port number of packets coming from
the internal network such that they appear to be coming
from the NAT itself; rewrite the destination IP address and
port number of packets coming from the external network
such that they can be delivered transparently.

LB provides typical virtual IP (VIP) to direct IP (DIP) trans-
lation in a data-center network, i.e., it maintains per-flow
state and uses it to: (1) rewrite the destination IP address
of packets coming from the outside world such that they
are transparently delivered to a backend server, ensuring all
packets from the same connection go to the same server;
and (2) rewrite the source IP address of packets coming from
the data-center such that they appear to be coming from the
LB itself. It picks backend servers for new connections in a
round-robin fashion.
Data Structures. To test CASTAN’s flexibility, for each NF
class listed above, we use multiple implementations, each
using a different underlying data structure, hence susceptible
to different adversarial workloads.
We use three LPM implementations, each one striking a

different balance between algorithmic complexity and mem-
ory efficiency: (1) The first one encodes the forwarding table
in a Patricia trie [38], where each node of the trie corre-
sponds to an IP prefix, and a node’s children correspond to
longer prefixes included in their parent. Lookup involves
traversing the trie until we find the longest matching pre-
fix. Hence, lookup complexity depends on the length of the
longest supported prefix, which is 32 bits, in our case. (2) The
second one implements Direct Lookup, where the forward-
ing table is translated into routes of equal-length IP prefixes
(each as long as the longest supported prefix), which are
then stored in a single, large array. In our case, the longest
supported prefix consists of 27 bits, leading to an array that
fits in a single 1GB page. Lookup involves indexing this array
once. Relative to the first implementation, this one trades off
memory efficiency for lower algorithmic complexity. (3) The
third one is the LPM implementation that comes with DPDK,
which implements a hierarchical version of Direct Lookup:
the first 24 bits of the destination IP address are used to index
a first-stage array, which then points to a second-stage array
if any routes with longer IP prefixes exist within the given
/24 IP prefix. Relative to the second implementation, this one
reduces the memory footprint, while also limiting lookup

378

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary L. Pedrosa et al.

procedure to at most two array accesses.
The NAT and LB both store their per-flow state in an asso-

ciative array. For each of these two NF classes, we use four
different associative-array implementations: (1) A standard
hash table of 65, 536 entries that resolves collisions through
separate chaining: elements that hash to the same position
are stored in a linked list referenced by that position. Lookup
of an element involves one hashing operation to pick a po-
sition, then traversing the referenced linked list until we
find a matching element (or reach the end of the list). Hence,
lookup complexity depends on the largest number of stored
elements that happened to hash to the same position. (2)
A standard hash ring, of 16.7M entries, that resolves col-
lisions through open addressing: elements are stored in a
circular array; if an element hashes to an array position that
is already taken, it is stored in the first available subsequent
position. The array is allocated within a single 1GB page,
with each entry cache-aligned for performance. Lookup of
an element involves one hashing operation to pick a posi-
tion, then traversing the occupied positions of the array until
we find a matching element (or traverse the entire array).
Hence, lookup complexity depends on the number of stored
elements. (3) An unbalanced binary tree, where lookup of
an element involves a standard binary search. Without re-
balancing, the tree is susceptible to skew, potentially becom-
ing a linked list. Hence, lookup complexity depends on the
number of stored elements. (4) The STL std::map data struc-
ture, which is a red-black tree, i.e., automatically re-balanced
whenever skew occurs.
Workloads. First, we created generic workloads that we
used across all NFs: (1) 1 Packet consists of the same packet,
replayed in a loop. We use it to assess best-case performance.
(2) Zipfian consists of traffic that is randomly generated ac-
cording to a Zipfian distribution with s = 1.26. The exponent
s was computed from a public dataset [6] which includes
real-world traffic captures from a University network. The
corresponding PCAP file has 100, 005 packets in 6, 674 unique
flows. It represents typical real-world traffic. (3) UniRand
consists of traffic that is randomly generated according to
a uniform distribution. The corresponding PCAP file has
1, 000, 472 packets in 1, 000, 001 unique flows. This kind of
traffic is typically part of denial-of-service attacks and is used
to stress-test NFs.

For the LB NFs, in particular, we did somewhat tailor the
generic workloads to the NF in order to force the only inter-
esting case, where the destination IP is set to the VIP. Any
other traffic is either statically routed or outright dropped
without any data structure access. This did not affect the
resulting packet distribution parameters.

Second, we created NF-specific workloads: (1) CASTAN and
(2)Manual are adversarial workloads generated, respectively,
by CASTAN and by hand. (3) UniRand CASTAN is similar to

UniRand, but involves the same number of flows as CASTAN.
We use it for a fair comparison to CASTAN when sheer traffic
volume is what matters for performance.

5.2 Adversarial Memory Access
First, we look at NFs that we expect to be susceptible to adver-
sarial memory access and ask: can we craft workloads that
consist of relatively few packets, yet introduce significant
cache contention?
The NFs we consider are LPM with one-stage and two-

stage Direct Lookup, which map the IP address space to a
small number of large arrays. This approach restricts the
number of instructions per packet to a small, predictable
number, but introduces opportunity for cache contention.
This is normally not a problem, as typical real-world work-
loads follow skewed, cache-friendly distributions, but could
be a problem if an adversary can craft a workload that pur-
posefully causes cache contention, especially if she does it
with relatively few packets, i.e., without even filling the cache.
The last point is important, because the smaller the workload
an adversary needs to have an effect, the harder it is to detect
it with standard entropy-based anomaly detectors.

For these two NFs, CASTAN synthesized workloads consist-
ing of 40 unique packets, each in a different flow. We did
not craft Manual workloads, as we were not able to reverse-
engineer cache behavior by hand. The straightforward way
to stress-test these NFs would be to access as much memory
as possible, which UniRand already does.
Fig. 4 shows the latency CDF for LPM with single-stage

Direct Lookup. This NF uses a single 1GB array, which far
exceeds the size of the 25.6MB L3 cache. First, we see that
the Zipfian workload experiences similar latency as 1 Packet,
indicating an insignificant cache-miss rate. Second, we see
that the UniRand workload triples the latency introduced by
the NF: the median distance between the NOP and UniRand
curves is about three times the median distance between the
NOP and Zipfian/1 Packet curves. This is consistent with the
expectation that uniformly accessing the 1GB array will lead
to a significant cache miss rate.

Most importantly, the 40-packet workload synthesized by
CASTAN experiences similar latency as the 1M-packet Uni-
Rand workload. So, both CASTAN and UniRand triple latency,
but CASTAN does it with four orders of magnitude fewer pack-
ets. UniRand CASTAN, which, in this case, is a UniRand-like
workload that consists of 40 packets, introduces similar la-
tency with Zipfian and 1 Packet.
Table 1 shows the throughput for the same NF. We see

that CASTAN and UniRand achieve 19% lower throughput
than the other workloads. The micro-architectural analysis
confirms these results: Fig. 5 shows the CDF of the number of
reference cycles consumed per packet, and clearly illustrates
the difference between the typical Zipfian workload and the

379

Automated Synthesis of Adversarial Workloads
for Network Functions SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

 0

 0.2

 0.4

 0.6

 0.8

 1

 4200 4400 4600 4800 5000 5200 5400 5600 5800

C
D

F

Latency (ns)

NOP
1 Packet

Zipfian
UniRand

UniRand CASTAN
CASTAN

Figure 4: End-to-end latency
CDF for LPM with 1-stage Direct
Lookup.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1500 2000 2500 3000

C
D

F

Reference Clock Cycles

NOP
1 Packet

Zipfian
UniRand

UniRand CASTAN
CASTAN

Figure 5: CPU reference cycles
CDF for LPM with 1-stage Direct
Lookup.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4200 4400 4600 4800 5000 5200 5400 5600 5800

C
D

F

Latency (ns)

NOP
1 Packet

Zipfian
UniRand

UniRand CASTAN
CASTAN

Figure 6: End-to-end latency
CDF for LPM with 2-stage Direct
Lookup.

NF LPM
1-stage
DL

LPM
2-stage
DL

LPM
btrie

LB un-
balanced
tree

NAT un-
balanced
tree

LB red-
black
tree

NAT red-
black
tree

NAT
hash
table

LB hash
table

NAT
hash
ring

LB hash
ring

NOP 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45
1 Packet 2.59 2.87 2.87 2.87 2.49 2.49 2.38 2.44 2.87 2.44 2.87
Zipfian 2.59 2.86 2.87 2.7 2.17 2.33 1.9 2.38 2.76 2.38 2.87
UniRand 2.12 2.49 2.8 1.64 0.95 1.32 0.95 0.47 1.48 1.96 2.65
UniRand CASTAN 2.59 2.87 2.87 2.65 2.28 2.6 2.28 2.33 2.87 2.44 2.87
CASTAN 2.1 2.82 2.65 2.69 2.01 2.56 2.22 2.39 2.73 1.97 2.69
Manual - - 2.7 2.7 1.9 - - - - - -

Table 1: Maximum throughput measured for each NF under each workload (Mpps)

NF LPM
1-stage
DL

LPM
2-stage
DL

LPM
btrie

LB un-
balanced
tree

NAT un-
balanced
tree

LB red-
black
tree

NAT red-
black
tree

NAT
hash
table

LB hash
table

NAT
hash
ring

LB hash
ring

NOP 271 271 271 271 271 271 271 271 271 271 271
1 Packet 309 317 341 378 549 469 617 416 394 610 409
Zipfian 309 317 341 433 688 663 900 666 394 683 409
UniRand 309 317 341 1127 2271 1099 2054 1658 630 729 415
UniRand CASTAN 309 317 343 422 626 537 703 593 394 610 409
CASTAN 309 317 699 678 1100 559 769 593 468 610 409
Manual - - 699 678 1224 - - - - - -

Table 2: Median instructions retired per packet for each NF under each workload.

NF LPM
1-stage
DL

LPM
2-stage
DL

LPM
btrie

LB un-
balanced
tree

NAT un-
balanced
tree

LB red-
black
tree

NAT red-
black
tree

NAT
hash
table

LB hash
table

NAT
hash
ring

LB hash
ring

NOP 1 1 1 1 1 1 1 1 1 1 1
1 Packet 2 2 2 2 2 2 2 1 2 2 2
Zipfian 2 2 2 2 2 2 2 2 2 2 2
UniRand 3 3 2 2 5 2 7 8 2 4 3
UniRand CASTAN 2 2 2 2 2 2 2 2 2 2 2
CASTAN 3 2 2 2 2 2 2 2 2 4 4
Manual - - 2 2 2 - - - - - -

Table 3: Median L3 misses per packet incurred by each NF under each workload.

adversarial CASTAN workload. Moreover, the two workloads
exhibit the same number of retired instructions per packet
(Table 2), but different L3 cache misses per packet (Table 3),
confirming that the CASTAN workload’s worse performance
is due to a higher cache miss rate.
The results are different for LPM with two-stage Direct

Lookup. This NF uses a 64MB array in the first stage, which

still exceeds the L3 cache, but not by orders of magnitude.
Fig. 6 shows that all workloads except for UniRand experi-
ence similar latency. This is not surprising: On the one hand,
CASTAN managed to find only 10 packets that could map to
the same L3 cache location; this number is below cache asso-
ciativity, which means that the CASTAN workload could not
cause cache contention. On the other hand, the NF’s data

380

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary L. Pedrosa et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4200 4400 4600 4800 5000 5200 5400 5600 5800

C
D

F

Latency (ns)

NOP
1 Packet

Zipfian
UniRand

UniRand CASTAN
CASTAN
Manual

Figure 7: End-to-end latency CDF
for LPM implemented with a Patri-
cia trie.

 0

 0.2

 0.4

 0.6

 0.8

 1

 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

C
D

F

Reference Clock Cycles

NOP
1 Packet

Zipfian
UniRand

UniRand CASTAN
CASTAN
Manual

Figure 8: CPU reference cycles CDF
for LPM implemented with a Patri-
cia trie.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4200 4400 4600 4800 5000 5200 5400 5600 5800

C
D

F

Latency (ns)

NOP
1 Packet

Zipfian
UniRand

UniRand CASTAN
CASTAN
Manual

Figure 9: End-to-end latency CDF
for NAT implemented with an un-
balanced tree.

structures still exceed the L3 cache, which means that a large
enough workload could cause cache contention—and indeed,
UniRand, with its 1M packets and flows, does. Given enough
time, we expect that CASTAN would also produce a workload
large enough to cause cache contention, but it is not yet able
to do it in useful time.

In conclusion, even though, in the common case, two-stage
Direct Lookup is one-memory-access slower than one-stage
Direct Lookup, it is more robust against performance attacks,
because the smaller data structures make it harder to find
small workloads that cause cache contention.

5.3 Algorithmic Complexity Attacks
Next, we look at NFs that we expect to be susceptible to
adversarial workloads seeking to increase the number of
instructions per packet.

We start from LPMwith a Patricia trie. For this NF, CASTAN
synthesized a workload of 30 packets and flows. We also
crafted a Manual workload of 8 packets that match the most
specific routes of the forwarding table, which results in
traversing the longest paths of the trie. Upon inspection,
we found that the CASTAN workload closely resembles the
Manual one: in addition to finding packets that match the
most specific routes, it also picked packets that are off by
just one bit at the end, thus requiring the same amount of
processing steps.
As we can see in Fig. 7, the 30-packet CASTAN workload

experiences slightly worse latency than the 100K-packet Zip-
fian, and similar latency to the 1M-packet UniRand workload.
Moreover, CASTAN experiences similar latency to Manual
without the benefit from human insight. According to the
micro-architectural analysis, CASTAN and Manual consume
significantly more reference cycles (Fig. 8) and instructions
(Table 2) per packet than the other workloads. This differ-
ence, however, did not translate into a significant difference
in latency.

We also consider NAT and LB with unbalanced trees. For
these NFs, CASTAN synthesized workloads consisting, respec-
tively, of 50 and 30 packets and flows.We also craftedManual
workloads that skew the tree and turn it into a linked list; e.g.,

for NAT, such a workload consists of a sequence of packets
with the same source and destination IP and source port,
and increasing destination ports. Another way to stress-test
these NFs is to increase the size of the tree as much as possi-
ble by sending a large number of flows, which is what the
UniRand workload does.
Fig. 9 shows the latency CDF for NAT (the results for LB

are similar). The most interesting result is that the 50-packet
CASTAN workload experiences 67% worse median latency
than the 100K-packet Zipfian, though it cannot beat the 1M-
packet UniRand. UniRand experiences more latency than
Zipfian, simply because it has an order of magnitude more
flows, hence creates a larger tree. CASTAN, on the other hand,
experiences more latency than Zipfian with two orders of
magnitude fewer flows, because it creates an unbalanced tree.
Moreover, CASTAN experiences similar latency to Manual
without the benefit of human insight.

The micro-architectural analysis confirms these results:
The number of reference cycles per packet approximately
mirrors latency (Fig. 10). Moreover, all workloads experience
similar L3 cache misses per packet (Table 3), but different
numbers of retired instructions per packet (Table 2), confirm-
ing that, for this NF, performance differences are due mostly
to algorithmic complexity, not cache contention.

Not surprisingly, if we replace the unbalanced tree with a
Red-Black tree, CASTAN fails to find an adversarial workload,
and latency experienced depends simply on the total number
of flows (which determine the size of the tree). This is illus-
trated in Fig. 11, which shows the latency CDF for NAT with
a Red-Black tree (the results for LB are similar): The 1M-flow
UniRand experiences worse latency than the 6K-flow Zipfian,
which experiences worse latency than the 50-flow CASTAN.
Internally, this kind of code induces local maxima within the
CASTAN analysis. As the analysis selects states that make the
tree deeper, the rebalancing algorithm kicks in and thwarts
the attempt. In the end, CASTAN explores many states with
mostly similar costs and picks the worst among the almost
equal candidates.

381

Automated Synthesis of Adversarial Workloads
for Network Functions SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 2000 3000 4000 5000

C
D

F

Reference Clock Cycles

NOP
1 Packet

Zipfian
UniRand

UniRand CASTAN
CASTAN
Manual

Figure 10: CPU reference cycles
CDF for NAT implemented with an
unbalanced tree.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4200 4400 4600 4800 5000 5200 5400 5600 5800

C
D

F

Latency (ns)

NOP
1 Packet

Zipfian
UniRand

UniRand CASTAN
CASTAN

Figure 11: End-to-end latency CDF
for NAT implemented with a red-
black tree.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4200 4400 4600 4800 5000 5200 5400 5600 5800

C
D

F

Latency (ns)

NOP
1 Packet

Zipfian
UniRand

UniRand CASTAN
CASTAN

Figure 12: End-to-end latency CDF
for LB implemented with a hash ta-
ble.

5.4 Cracking Hash Functions
Finally, we look at NFs that use hash functions for indexing
their data structures and ask: can we craft workloads that
consist of relatively few packets, yet introduce a significant
rate of hash collisions?

We start from two LB NFs, one with a 65, 536-entry hash
table, and one with a 17M-entry hash ring. For the former,
CASTAN synthesized a workload of 30 packets that cause per-
sistent hash collisions. This workload experiences slightly
worse latency than the 100K-packet Zipfian, and slightly bet-
ter latency than the 1M-packet UniRand (Fig. 12). In the case
of the hash ring, however, the dominant adversarial behavior
caused by the CASTAN workload is cache contention. This is
because the sheer size of the hash ring makes it vulnerable
to adversarial memory access, and CASTAN found it easier to
synthesize packets that contend for the same L3 cache loca-
tion than packets that cause collisions. The CASTANworkload
experiences 56% worse median latency than Zipfian and 32%
worse median latency than UniRand (Fig. 13).

We also consider NAT NFs that use the same data struc-
tures. These pose a particularly difficult challenge to the
CASTAN analysis, as the NAT hashes and stores two entries
for each flow, using different parts of the packet to form
different keys (one to match outgoing packets and another
to match returning traffic). The challenge lies in the fact that
while both hashes are independently havoced, the keys that
serve as inputs are related and share some portion (the ex-
ternal end-point’s IP and port). This means that CASTAN not
only has to find an entry in the rainbow table that reverses
the hash, but actually two of them that reverse two differ-
ent hashes while preserving the relationship between keys
and also satisfying the constraints on flow uniqueness. In
practice, CASTAN was rarely able to do this reliably. For the
hash table, the complex set of constraints for the related keys
and packet uniqueness while also trying to cause system-
atic collisions defeated CASTAN, as none of the havocs were
successfully reversed. For the hash ring, the fact that each
havoc reverses a unique value made the problem somewhat
easier. As a result, we were able to systematically reverse

NF # Packets Time (seconds)

LB / Hash table 30 115
LB / Hash ring 40 31955
LB / Red-Black Tree 30 437
LB / Unbalanced Tree 30 453
LPM / Patricia Trie 30 1166
LPM / Lookup Table 40 2542
LPM / DPDK LPM 40 88508
NAT / Hash Table 30 5210
NAT / Hash ring 40 2040
NAT / Red-Black Tree 35 6836
NAT / Unbalanced Tree 50 2444

Table 4: List of NFs, indicating how many packets we
generated and the analysis run time.

the first of the two havocs used for each packet, while satis-
fying all uniqueness constraints. The second one remained
unreconciled, as we could not find entries in the rainbow
table that both reversed the second hash and had a key that
was related to the first one in the expected manner.

The results reflect this outcome: For the NAT with hash ta-
ble, the CASTAN workload experiences slightly worse latency
than the Zipfian, but significantly better latency than the
UniRand (Fig. 14). For the NAT with hash ring, the fact that
one of the two hashes is successfully reversed for each packet
allows part of the expected slowdown to be achieved (the
one that results from the first access to the data structure).
As a result, the CASTAN workload experiences 159% worse
median latency than Zipfian and 89% worse median latency
than UniRand (Fig. 15).

5.5 Discussion
Through our measurement campaign, we were able to show
that CASTAN is quite capable of generating useful adversarial
workloads. In Table 5, we summarize the key results, showing
how each NF is affected by typical and adversarial workloads,
including a manually crafted one and the one generated
by CASTAN. Table 4 shows how long it took for CASTAN to
generate these workloads. The results show that when it was
possible to manually create an adversarial workload using
human intuition, CASTAN closely matched it’s performance,

382

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary L. Pedrosa et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4200 4400 4600 4800 5000 5200 5400 5600 5800

C
D

F

Latency (ns)

NOP
1 Packet

Zipfian
UniRand

UniRand CASTAN
CASTAN

Figure 13: End-to-end latency CDF
for LB implemented with a hash
ring.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4200 4400 4600 4800 5000 5200 5400 5600 5800

C
D

F

Latency (ns)

NOP
1 Packet

Zipfian
UniRand

UniRand CASTAN
CASTAN

Figure 14: End-to-end latency CDF
for NAT implemented with a hash
table.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4200 4400 4600 4800 5000 5200 5400 5600 5800

C
D

F

Latency (ns)

NOP
1 Packet

Zipfian
UniRand

UniRand CASTAN
CASTAN

Figure 15: End-to-end latency CDF
for NAT implemented with a hash
ring.

NF Median Deviation (ns)

Zipfian Manual CASTAN

LB / Hash table 131 - 141
LB / Hash ring 103 - 161
LB / Red-Black Tree 179 - 141
LB / Unbalanced Tree 109 256 240
LPM / Patricia Trie 87 112 100
LPM / Lookup Table 115 - 346
LPM / DPDK LPM 141 - 141
NAT / Hash Table 160 - 182
NAT / Hash ring 148 - 384
NAT / Red-Black Tree 404 - 176
NAT / Unbalanced Tree 237 359 397

Table 5: List of NFs and tested workloads, indicating
the median latency deviation from NOP.

automatically. When the structure of the NF makes it more
difficult to manually reason in such a way, CASTAN proves to
be invaluable, generating workloads up to 201% slower than
typical Zipfian traffic.

Due to limitations in our experimental setup, our evalua-
tion only explored scenarios with 100% adversarial traffic. A
more realistic adversary can only inject a fraction of the over-
all traffic as a part of a DDoS campaign. We expect that due
to the effects of head of line blocking, even a limited adver-
sary could potentially cause more damage than their limited
capabilities would suggest. Furthermore, whereas a typical
DDoS overwhelms the NF through sheer volume, adversarial
workloads can increase the efficiency of such an attack by
consuming disproportionately more resources for the same
amount of attack traffic. Studying such effects would require
a detailed cost-benefit analysis from the attacker’s point of
view, which we leave to future work.

CASTAN also has several limitations. For simpler network
functions with a more direct mapping between the input
packet and its processing performance, CASTAN has an easier
time reverse engineering adversarial workloads. However,
there are several ways in which this performance envelope
can be obfuscated, making it more difficult for us to derive
such workloads. The use of one-way functions, such as hash
functions poses one such challenge. We use rainbow tables

to help reverse these but this can fail or only partially suc-
ceed when additional constraints on the hashed packet come
into play. For now, analyzing the hash function directly in
symbolic execution is intractable but these functions are
not typically cryptographically secure and can hence be rea-
soned about with sufficiently powerful solvers or appropriate
constraint algebra. We leave exploring such possibilities to
future work.
Another challenge arises when the constraints on sym-

bolic pointers that arise during the CASTAN analysis prove
to be incompatible with the limited contention sets that our
cache model was able to capture empirically. To handle this
more robustly, it would be more appropriate to have a more
complete model of the cache behavior, based on the actual
cache slicing and eviction algorithms implemented in the
CPU. Reverse engineering the internal structure of CPU
caches to this effect is still in many cases an open problem
in active research [4]. We tried incorporating some prior art
from this field in our own models but failed to achieve suffi-
cient predictive power for our purposes, hence our reliance
on empirical models. If it ever becomes possible to further
encapsulate the cache behavior in a more powerful algebraic
model that can be integrated into CASTAN, we anticipate that
it will be much easier to generate adversarial workloads with
even more precision (i.e. even fewer packets).

6 RELATEDWORK
Performance evaluation and diagnosis:

Software performance attacks are a well studied problem.
[13] describes adversarial complexity-based attacks on data-
structures and network applications and how to mitigate
them. [3, 36] have studied specific IDS NFs while considering
both algorithmic complexity and the cache. These works
manually study specific systems; whereas CASTAN offers an
automated approach to discovering such issues.
[30, 32, 39] use fuzzing-like approaches to automatically

expose performance bottlenecks at the level of individual
methods and data-structures. Such approaches may not scale
well when the input space is larger and less structured as
is the case in NFs. [28] automatically detects and exploits

383

Automated Synthesis of Adversarial Workloads
for Network Functions SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

second order denial-of-service attacks in web services. Such
attacks result from the implicit complexity of processing
database queries in web service architectures and don’t di-
rectly apply in NF environments. Like CASTAN, [7] also uses
symbex to attack algorithmic complexity. This work uses
exhaustive symbex for small inputs to find worst-case inputs
and then generalizes to discover likely worst-case candidates
for larger inputs. CASTAN could benefit from this technique
for more complex NFs where the analysis may otherwise not
scale.
Quantifying worst-case performance can follow one of

two approaches. The first approach, of which CASTAN is an
example, under-approximates the worst case performance.
By constructing adversarial workloads this approach pro-
vides a lower bound on the worst-case performance. The
other approach, commonly known as Worst-Case Execution
Time (WCET) Analysis [40] typically over-approximates the
WCET and provides conservative but safe upper bounds on
the execution time. While such an approach may provide
formal performance guarantees, it does not provide an ad-
versarial workload which is of prime importance during the
debugging phase.

With the adoption of software NFs, there exist several pro-
posals for online performance diagnosis systems.NFVPerf [26]
leverages passive traffic monitoring to identify both hard-
ware and software bottlenecks in VirtualizedNFs. PerfSight [41]
leverages low-level packet processing performance metrics
to detect and diagnose performance problems. These systems
help diagnose performance issues at run time given a spe-
cific NF workload. CASTAN complements these approaches
by generating adversarial workloads that they can then use
to diagnose and debug the underlying performance issue.

ProgramAnalysis Applied to NFs: Several prior works
have proposed using static analysis to help understand, de-
bug, and verify software NFs. StateAlyzr [20] does this to
identify per-flow and global state in NFs to facilitate the
implementation of state migration and redistribution. Many
other approaches, like CASTAN, use symbolic execution to find
bugs or formally verify correctness. [9, 10, 22, 44] leverage
this technique to automate bug finding and test-case gener-
ation. [14, 43], on the other hand, use exhaustive symbolic
execution to formally verify functional correctness. Others
have extended symbolic execution to explore multiple sys-
tems at once: [23] finds discrepancies between different SDN
agents, while [29] identifies interoperability issues between
a client and a server. [37] symbolically executes NF models to
reason about network properties like reachability and loops.
Right now there is no guarantee that NF models and imple-
mentations agree, but emerging techniques automatically
synthesize the models [42].

7 CONCLUSIONS
In this paper, we present CASTAN, a tool that automates the
generation of adversarial workloads for NFs that lead to poor
performance. We statically analyze the NF code using sym-
bolic execution to find code paths that perform poorly. Dur-
ing analysis, we attack NF performance on three fronts: algo-
rithmic complexity, adversarial memory access patterns, and
reversing hash functions. Algorithmic complexity attacks
are caused by code paths which execute more instructions.
We find these paths by using a directed symbolic execution
heuristic which estimates the number of CPU cycles needed
to process each packet. We then prioritize the exploration of
code paths that maximize this metric. We also build a CPU
cache model that allows us to determine specific memory
access patterns that induce persistent L3 cache misses and
evictions. Finally, we incorporate the use of rainbow tables
during analysis to reverse one-way functions such as those
used in hash tables. These three techniques combined allow
CASTAN to successfully generate adversarial workloads for
11 different NFs that we evaluate in a detailed measurement
campaign in §5. The results show that under ideal circum-
stances, a CASTAN workload is able to increase NF latency
by 201% and decrease throughput by 19% when compared
to typical test network traffic. When the NF structure is
simple enough that human intuition can create adversarial
workloads manually, we show that a corresponding CASTAN
workload behaves similarly, while being generated in an au-
tomated fashion. We also show that CASTAN completes in a
reasonable amount of time, typically less than an hour.

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers and our
shepherd Sujata Banerjee for helping us improve our work.
We were funded by Starting Grant #BSSGI0_155834 from the
Swiss National Science Foundation and Intel Corporation.

REFERENCES
[1] 2012. Intel Data Direct I/O Technology Overview. https:

//www.intel.com/content/dam/www/public/us/en/documents/
white-papers/data-direct-i-o-technology-overview-paper.pdf.
Accessed: 2018-06-25.

[2] 2018. The LLVM Compiler Infrastructure. https://llvm.org/. Accessed:
2018-06-14.

[3] YehudaAfek, Anat Bremler-Barr, YotamHarchol, David Hay, and Yaron
Koral. 2016. Making DPI Engines Resilient to Algorithmic Complexity
Attacks. IEEE/ACM Trans. on Networking 24, 6 (2016).

[4] Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk Sunar. 2015.
Systematic Reverse Engineering of Cache Slice Selection in Intel Pro-
cessors. IACR Cryptology ePrint Archive 2015 (2015).

[5] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K Rustan M Leino. 2005. Boogie: A Modular Reusable Verifier for
Object-Oriented Programs. In Formal Methods for Components and
Objects.

[6] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network
traffic characteristics of data centers in the wild. In Internet Measure-
ment Conf.

384

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://llvm.org/

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary L. Pedrosa et al.

[7] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. 2009. WISE: Au-
tomated test generation for worst-case complexity. In Intl. Conf. on
Software Engineering.

[8] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs. In Symp. on Operating Sys. Design and
Implem.

[9] Marco Canini, Dejan Kostic, Jennifer Rexford, and Daniele Venzano.
2011. Automating the testing of OpenFlow applications. Intl. Workshop
on Rigorous Protocol Engineering (2011).

[10] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and
Jennifer Rexford. 2012. A NICE Way to Test OpenFlow Applications.
In Symp. on Networked Systems Design and Implem.

[11] CASTAN 2018. CASTAN code repository. https://github.com/nal-epfl/
castan.

[12] Sophie Cluet and Claude Delobel. 1992. A general framework for the
optimization of object-oriented queries. ACM SIGMOD Record 21, 2
(1992).

[13] Scott A Crosby and Dan S Wallach. 2003. Denial of Service via Algo-
rithmic Complexity Attacks. In USENIX Security Symp.

[14] Mihai Dobrescu and Katerina Argyraki. 2014. Software Dataplane
Verification. In Symp. on Networked Systems Design and Implem.

[15] Mihai Dobrescu, Katerina Argyraki, and Sylvia Ratnasamy. 2012. To-
ward Predictable Performance in Software Packet-Processing Plat-
forms. In Symp. on Networked Systems Design and Implem.

[16] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohl-
fart, and Georg Carle. 2015. MoonGen: A Scriptable High-Speed Packet
Generator. In Internet Measurement Conf. https://doi.org/10.1145/
2815675.2815692

[17] Patrice Godefroid. 2012. Test Generation Using Symbolic Execution.
In IARCS Annual Conf. on Foundations of Software Technology and
Theoretical Computer Science, Vol. 18. https://doi.org/10.4230/LIPIcs.
FSTTCS.2012.24

[18] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. 2015. Network function
virtualization: Challenges and opportunities for innovations. IEEE
Communications Magazine 53, 2 (Feb 2015). https://doi.org/10.1109/
MCOM.2015.7045396

[19] P. E. Hart, N. J. Nilsson, and B. Raphael. 1968. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE Trans. on
Systems Science and Cybernetics 4, 2 (July 1968). https://doi.org/10.
1109/TSSC.1968.300136

[20] Junaid Khalid, Aaron Gember-Jacobson, RoneyMichael, Anubhavnidhi
Abhashkumar, and Aditya Akella. 2016. Paving the Way for NFV:
Simplifying Middlebox Modifications Using StateAlyzr. In Symp. on
Networked Systems Design and Implem.

[21] J. C. King. 1976. Symbolic Execution and Program Testing. J. ACM 19,
7 (1976).

[22] Nupur Kothari, Ratul Mahajan, Todd Millstein, Ramesh Govindan, and
Madanlal Musuvathi. 2011. Finding protocol manipulation attacks.
SIGCOMM Computer Communication Review 41, 4 (2011).

[23] Maciej Kuzniar, Peter Peresini, Marco Canini, Daniele Venzano, and
Dejan Kostic. 2012. A SOFT Way for OpenFlow Switch Interoperabil-
ity Testing. In Intl. Conf. on Emerging Networking Experiments and
Technologies.

[24] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and Michael Hicks.
2011. Directed symbolic execution. In Intl. Static Analysis Symp.

[25] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. 1999.
PAPI: A portable interface to hardware performance counters. In Pro-
ceedings of the department of defense HPCMP users group conference,
Vol. 710.

[26] Priyanka Naik, Dilip Kumar Shaw, and Mythili Vutukuru. 2016.
NFVPerf: Online performance monitoring and bottleneck detection

for NFV. In IEEE Conf. on Network Function Virtualization and Software
Defined Networks. https://doi.org/10.1109/NFV-SDN.2016.7919491

[27] Philippe Oechslin. 2003. Making a faster cryptanalytic time-memory
trade-off. In Annual Intl. Cryptology Conf.

[28] Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2015. Detecting and Ex-
ploiting Second Order Denial-of-Service Vulnerabilities in Web Ap-
plications. In Conf. on Computer and Communication Security. https:
//doi.org/10.1145/2810103.2813680

[29] Luis Pedrosa, Ari Fogel, Nupur Kothari, Ramesh Govindan, Ratul Ma-
hajan, and Todd Millstein. 2015. Analyzing Protocol Implementa-
tions for Interoperability . https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/pedrosa. In Symp. on Networked Sys-
tems Design and Implem.

[30] Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana.
2017. Slowfuzz: Automated domain-independent detection of algorith-
mic complexity vulnerabilities. In Conf. on Computer and Communica-
tion Security.

[31] Mia Primorac, Katerina Argyraki, and Edouard Bugnion. 2017. How
to Measure the Killer Microsecond. In ACM SIGCOMMWorkshop on
Kernel-Bypass Networks.

[32] P. Puschner and R. Nossal. 1998. Testing the Results of Static Worst-
Case Execution-Time Analysis. In Real-Time Systems Symp.

[33] C.V. Ramamoorthy, S.-B.F. Ho, andW.T. Chen. 1976. On the Automated
Generation of Program Test Data. IEEE Trans. on Software Engineering
2, 4 (1976).

[34] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and
Guangyu Shi. 2012. Design and Implementation of a Consolidated
Middlebox Architecture. In Symp. on Networked Systems Design and
Implem.

[35] Vyas Sekar and Petros Maniatis. 2011. Verifiable Resource Accounting
for Cloud Computing Services. In Cloud Computing Security Workshop.
https://doi.org/10.1145/2046660.2046666

[36] Randy Smith, Cristian Estan, and Somesh Jha. 2006. Backtracking
algorithmic complexity attacks against a NIDS. In Annual Computer
Security Applications Conf.

[37] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu.
2016. SymNet: scalable symbolic execution for modern networks. In
ACM SIGCOMM Conf.

[38] Wojciech Szpankowski. 1990. Patricia Tries Again Revisited. J. ACM
37, 4 (Oct. 1990). https://doi.org/10.1145/96559.214080

[39] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. 2018. Synthe-
sizing Programs That Expose Performance Bottlenecks. In Intl. Symp.
on Code Generation and Optimization. https://doi.org/10.1145/3168830

[40] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenström. 2008. The Worst-case
Execution-time Problem — Overview of Methods and Survey of Tools.
ACM Trans. Embed. Comput. Syst. 7, 3, Article 36 (May 2008). https:
//doi.org/10.1145/1347375.1347389

[41] Wenfei Wu, Keqiang He, and Aditya Akella. 2015. PerfSight: Perfor-
mance Diagnosis for Software Dataplanes. In Internet Measurement
Conf. https://doi.org/10.1145/2815675.2815698

[42] Wenfei Wu, Ying Zhang, and Sujata Banerjee. 2016. Automatic Syn-
thesis of NF Models by Program Analysis. In ACM Workshop on Hot
Topics in Networks. https://doi.org/10.1145/3005745.3005754

[43] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina Argyraki,
and George Candea. 2017. A Formally Verified NAT. InACM SIGCOMM
Conf.

[44] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKe-
own. 2012. Automatic test packet generation. In Intl. Conf. on Emerging
Networking Experiments and Technologies.

385

https://github.com/nal-epfl/castan
https://github.com/nal-epfl/castan
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.24
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.24
https://doi.org/10.1109/MCOM.2015.7045396
https://doi.org/10.1109/MCOM.2015.7045396
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/NFV-SDN.2016.7919491
https://doi.org/10.1145/2810103.2813680
https://doi.org/10.1145/2810103.2813680
 https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pedrosa
 https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pedrosa
https://doi.org/10.1145/2046660.2046666
https://doi.org/10.1145/96559.214080
https://doi.org/10.1145/3168830
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/2815675.2815698
https://doi.org/10.1145/3005745.3005754

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 Overview
	3.2 Cache Contention Sets
	3.3 Current Cost and Memory Access
	3.4 Potential Cost
	3.5 Hash Functions

	4 Implementation
	5 Evaluation
	5.1 Setup
	5.2 Adversarial Memory Access
	5.3 Algorithmic Complexity Attacks
	5.4 Cracking Hash Functions
	5.5 Discussion

	6 Related Work
	7 Conclusions
	References

